2 research outputs found

    Towards hybrid primary intersubjectivity: a neural robotics library for human science

    Get PDF
    Human-robot interaction is becoming an interesting area of research in cognitive science, notably, for the study of social cognition. Interaction theorists consider primary intersubjectivity a non-mentalist, pre-theoretical, non-conceptual sort of processes that ground a certain level of communication and understanding, and provide support to higher-level cognitive skills. We argue this sort of low level cognitive interaction, where control is shared in dyadic encounters, is susceptible of study with neural robots. Hence, in this work we pursue three main objectives. Firstly, from the concept of active inference we study primary intersubjectivity as a second person perspective experience characterized by predictive engagement, where perception, cognition, and action are accounted for an hermeneutic circle in dyadic interaction. Secondly, we propose an open-source methodology named \textit{neural robotics library} (NRL) for experimental human-robot interaction, and a demonstration program for interacting in real-time with a virtual Cartesian robot (VCBot). Lastly, through a study case, we discuss some ways human-robot (hybrid) intersubjectivity can contribute to human science research, such as to the fields of developmental psychology, educational technology, and cognitive rehabilitation

    Cognitive and motor compliance in intentional human-robot interaction

    No full text
    Embodiment and subjective experience in humanrobot interaction are important aspects to consider when studying both natural cognition and adaptive robotics to human environments. Although several researches have focused on nonverbal communication and collaboration, the study of autonomous physical interaction has obtained less attention. From the perspective of neurorobotics, we investigate the relation between intentionality, motor compliance, cognitive compliance, and behavior emergence. We propose a variational model inspired by the principles of predictive coding and active inference to study intentionality and cognitive compliance, and an intermittent control concept for motor deliberation and compliance based on torque feed-back. Our experiments with the humanoid Torobo portrait interesting perspectives for the bio-inspired study of developmental and social processes
    corecore